
Distributed Deep Reinforcement Learning on the Cloud for
Autonomous Driving∗

Mitchell Spryn
Microsoft Corporation

Redmond, WA, United States
mspryn@microsoft.com

Aditya Sharma
Microsoft Corporation

Redmond, WA, United States
adshar@microsoft.com

Dhawal Parkar
Microsoft Corporation

Redmond, WA, United States
dparkar@microsoft.com

Madhur Shrimal
Microsoft Corporation

Redmond, WA, United States
mashrima@microsoft.com

ABSTRACT
This paper proposes an architecture for leveraging cloud computing
technology to reduce training time for deep reinforcement learning
models for autonomous driving by distributing the training process
across a pool of virtual machines. By parallelizing the training pro-
cess, careful design of the reward function and use of techniques
like transfer learning, we demonstrate a decrease in training time
for our example autonomous driving problem from 140 hours to
less than 1 hour. We go over our network architecture, job distri-
bution paradigm, reward function design and report results from
experiments on small sized cluster (1-6 training nodes) of machines.
We also discuss the limitations of our approach when trying to
scale up to massive clusters.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Ro-
botics; Architectures; Cloud computing; • Theory of computa-
tion →Machine Learning Theory; Reinforcement Learning;

KEYWORDS
Autonomous Driving, Deep Reinforcement Learning, Distributed
Machine Learning, Cloud Computing, Simulation

ACM Reference Format:
Mitchell Spryn, Aditya Sharma, Dhawal Parkar, and Madhur Shrimal. 2018.
Distributed Deep Reinforcement Learning on the Cloud for Autonomous
Driving. In SEFAIAS’18: SEFAIAS’18:IEEE/ACM 1st International Workshop on

∗This work was carried out by the Deep Learning and Robotics Garage Chapter at
Microsoft as part of the Distributed Reinforcement Learning tutorial in the Autonomous
Driving Cookbook. The code for the work presented here can be found on GitHub by
visiting this link: https://aka.ms/AutonomousDrivingCookbook

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SEFAIAS’18, May 28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5739-5/18/05. . . $15.00
https://doi.org/10.1145/3194085.3194088

Software Engineering for AI in Autonomous Systems , May 28, 2018, Gothen-
burg, Sweden. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3194085.3194088

1 INTRODUCTION
Deep learning is one of the most important technologies that is pow-
ering the AI revolution. Models based around deep neural networks
have been shown to dramatically outperform traditional models
when tested on a wide range of applications, from image classifi-
cation to text generation. While these models perform well, one
of their main limitations is that they require massive amounts of
labeled data for training. Collecting and maintaining these datasets
is feasible for simple problems like image classification, but quickly
becomes impractical for more complex problems like autonomous
driving. Achieving levels 4 and 5 of autonomy in cars would re-
quire training on hundreds of millions and sometimes hundreds of
billions of miles worth of data to demonstrate reliability, according
to a report from the Rand Corporation [6]. The report further goes
on to state that existing fleets of vehicles would take tens and some-
times hundreds of years to drive these miles. For solving complex
problems of that scale, not only do we need smart ways to collect
and use this data (simulated environments), it is also necessary to
have algorithms that can learn from unlabeled data. One of the
most popular classes of algorithms used for this purpose is deep
reinforcement learning.

Deep reinforcement learning algorithms are inspired by the psy-
chology of human and animal behavior. These models follow the
paradigm of an agent interacting with its environment through a
series of actions. The environment provides feedback to the agent
via a reward signal, which the agent attempts to maximize. Over
time, the agent learns how to select the actions that maximize the
reward function, learning the desired behavior. Recently, the power
of deep neural networks have been integrated into these frame-
works, allowing AI agents to perform at or above parity with human
experts on a wide range of difficult tasks such as mastering Atari
video games [8] and the game of Go [14].

1.1 Deep Learning for Autonomous Driving
One of the most exciting AI challenges today is autonomous driving.
Over the last couple of years, we have seen a shift in approach from
tradition probabilistic robotics-based techniques to more end-to-
end deep learning based techniques [2]. The goal of the problem is

https://aka.ms/AutonomousDrivingCookbook
https://doi.org/10.1145/3194085.3194088
https://doi.org/10.1145/3194085.3194088
https://doi.org/10.1145/3194085.3194088

SEFAIAS’18, May 28, 2018, Gothenburg, Sweden Mitchell Spryn, Aditya Sharma, Dhawal Parkar, and Madhur Shrimal

Figure 1: The architecture of our deep Q-network. The input is a cropped image from a front-facing web-cam on the car. The
output is a set of five Q values corresponding to the five possible actions

to design an algorithm to generate the necessary control signals
to drive a vehicle using only simple sensor data. While attempts
to be made to solve this problem using supervised learning [2]
[3], none have been totally successful, partially due to lack of an
all-encompassing dataset. Deep reinforcement learning algorithms
have shown promising results in some sub-problems related to
autonomous driving such as lane assist [11] and highway navigation
[13]. Although the ability to train on an unlabeled dataset is enticing,
it comes at a steep cost. First, the learning process depends on the
AI agent making costly mistakes. In the context of the autonomous
driving problem, a mistake could lead to a crash. It is simply not
feasible to be able to perform these tests in the real world. Instead, it
is necessary to have a method of simulation in which the agent can
safely make mistakes without incurring monetary cost or loss of
life. Fortunately, high quality simulators are available [12], which
help mitigate this issue.

Another big cost related to reinforcement learning is computa-
tion time. Reinforcement learning algorithms generally take much
longer to train than their supervised learning counterparts. As an
example, the original Deep Q-network (DQN) trained to play Atari
games required millions of iterations before it converged, requir-
ing run times of 12-14 days to train [8]. For a complex task like
autonomous driving, the training can take much longer, even on
the order of weeks or months. It is impractical to wait that long
for a single model to train. The obvious solution is to attempt to
somehow parallelize the process, cutting down the training time
geometrically. It has been shown that with a simple parallelization
strategy it is possible to decrease the training time for networks
learning to play Atari games by up to a factor of five [10]. With
cloud technology making massive virtual machine clusters widely
available, this strategy can prove effective in decreasing training
time and making deep reinforcement learning an effective strategy
for solving the autonomous driving problem.

In this paper, we propose a solution for utilizing the cloud to
improve the training time of a deep reinforcement learning model
solving a simple problem related to autonomous driving. We de-
scribe a method of parallelizing the training work to decrease the
training time, as well as some additional findings that served to fur-
ther decrease the training time. We demonstrate that this approach
achieves significant time savings over single-machine approaches,
and also discuss some of the limitations to the scale-out model for
increasing performance.

2 BACKGROUND AND METHOD
2.1 Deep Q-Network
Q-learning [16] [17] is one of the oldest and most popular rein-
forcement learning algorithms. In Q-learning, the world is divided
into two parts: an agent and the surrounding environment. Dur-
ing each iteration of the training process, the agent is presented
with a set of actions A, from which it selects one to perform. This
action takes the agent from its current state S to a new state S ′.
As a result of selecting this action, the environment provides the
agent with a reward R(S, S ′,A). These actions are repeated until a
terminal state is reached in which there are no further choices for
actions which the agent can take. This marks the end of an episode,
after which the agent is placed into a new random state and the
training continues. For our problem, we define the state as a single
RGB frame input from a front-facing web-cam on the car. Given
this state information, the agent then takes the action of selecting
a steering control signal from five possible values: hard left, soft
left, straight ahead, soft right and hard right. Once the selection is
made, the agent is then given a reward relative to its position in
the environment. The details of the reward function are discussed
in more detail in section 3.3.

In all but the simplest problems, it does not suffice for an algo-
rithm to optimize purely for the reward function R(S, S ′,A). The
algorithm loses the ability to make decisions that are disadvanta-
geous in the short term, but more viable in the long term. As an
example, consider the action of a vehicle swerving to avoid hitting
a pothole. In general, a sharp swerve is an undesirable behavior,
and should be punished by the environment. However, if the agent
purely optimizes for immediate reward, it will not swerve until it
is too late to avoid the pothole. Thus, the algorithm needs to not
only consider the reward from taking the current action, but also
the expected reward from future iterations resulting from taking
the current action. In Q-learning, this is modeled by the Q values.
Q values are defined as:

Q(S, S ′,A) = R(S, S ′,A) + λ ∗max
A′

(Q ∗ (S ′, S ′′,A′)) (1)

λ is a scalar in the range [0, 1] which controls the amount of
weight given to future predictions. At each iteration, the agent
simply computes the Q value for each of the possible actions, and
selects the action corresponding the largest. It has been shown [7]
that for any environment that can be modeled as a finite Markov
Decision Process, this strategy is proven to maximize the reward

Distributed Deep Reinforcement Learning on the Cloud for Autonomous Driving SEFAIAS’18, May 28, 2018, Gothenburg, Sweden

received by the agent. Unfortunately, in most real-world problems,
the state space is too large to directly compute theQ values, so they
must be estimated by some means. In our algorithm, we utilize a
deep neural network that accepts the state information and outputs
the Q values for each of the possible actions. The architecture of
the deep neural network used to compute the Q values is a variant
of the Deep Q-Network (DQN) proposed in [9]. This model is a
convolutional neural network with three convolutional layers, each
separated by a max pooling layer. The network ends with two dense
layers, with the final layer having one neuron for each Q value. A
visual representation of the network used during training can be
seen in Figure 1.

During training, we utilized two optimizations discussed in [9]:
replay memory and the target network hack. One of the issues with
directly using the data generated from the RL model is that the
labels for successive data points are highly correlated. For example,
if the model is taking a sharp left turn at time t , it is very likely
to be continuing that turn at time t + 1. As episodes are relatively
short, this creates a label distribution that is fundamentally different
from the underlying distribution of labels. This makes it difficult
for the model to generalize, and it instead oscillates back and forth
between the different skewed distributions, never converging to
the correct values. Like [9], we solve this issue by utilizing a replay
memory. The replay memory is simply a circular buffer that stores
data points collected during the agent exploration process. After
each episode, the data points collected are inserted into the replay
memory, overwriting the oldest data points. Then, the training
data is generated by randomly selecting data points from the replay
memory. This breaks the correlation between successive data points,
allowing the model to learn the underlying distribution of labels.

When examining the Bellman Equation, we notice that there is a
bit of a chicken-and-egg problem: to compute the Q values for any
given state, we must first be able to compute the Q∗ values for all
the successive states. As we do not have data points for the future
actions that the agent did not select, we cannot compute this value
exactly. Instead, we must use our model to predict these values.
When we use the same model to predict the Q∗ values that we are
training to predict theQ values, the model fails to converge. This is
because each training iteration changes the Q∗ values drastically,
so the model is chasing a moving target. The solution proposed in
[9] is to use a second copy of the active network called the target
network to predict the Q∗ values. The target network is updated
periodically by copying the weights from the actively trained active
network. This process decreases the variance in the Q∗ values,
which allows the model to converge.

When training any deep learning algorithm, there are two strate-
gies that can be taken to exploring the space of optimal values. First,
the agent can attempt to make very small changes to the current
strategy, iteratively making small improvements, called exploitation.
Second, the agent can attempt a radically different strategy, called
exploration. Both modes of operation are necessary for training
a robust model. Without exploration, the agent can converge to
a suboptimal strategy. Without exploitation, the model itself will
never improve, as we will be training on decisions made at random.
In our approach, we balance these two conflicting goals using linear
annealing. At the start of training, we favor exploration, because
our model has not trained on a sufficient number of samples, and

Figure 2: Our model distribution approach. Each agent runs
a copy of the simulator as well as a local trainer. Periodi-
cally and asynchronously, agents send out gradient updates
to the parameter server. The parameter server collects the
incoming gradients, updates the copy of the master model
and broadcasts it back to each agent.

the predictions are likely to be meaningless. Over time, as the model
improves, we decrease the amount of exploration and increase the
amount of exploitation as the model improves. Towards the end of
training, we are almost exclusively using an exploitative strategy,
but we still occasionally choose to explore in case the model has
converged to a suboptimal strategy.

2.2 Training Job Distribution
While reinforcement learning provides a huge advantage over su-
pervised techniques in that it does not require labeled datasets, it
poses another challenge: it needs a much larger amount data to
train meaningful models. As we will see in section 3.2, although
techniques like transfer learning [18] help improve the rate at which
the model learns, accumulating close to 1 million iterations worth
of training data still takes a lot of time. In addition, for more com-
plex problems (like our autonomous driving use case), the number
of training iterations needed increases dramatically, to the point
at which it is impossible to train on a single node. To train the
algorithm effectively, it is necessary to parallelize training across
multiple machines. Thankfully with the availability of cloud re-
sources, this is very achievable.

In our experiments, we tried a variant of the downpour stochastic
gradient descent (downpour SGD) algorithm presented in [5]. Our
job distribution paradigm is shown in Figure 2. We start with a
pool of virtual machine nodes. At the start of training, one node
is designated the parameter server node and all other nodes are
designated as agent nodes. The parameter server is responsible
for keeping the master copy of the model, accepting asynchronous
updates from each of the agent nodes, and controlling the annealing
rate. The agent nodes are responsible for running the simulator
and performing local model training. After an agent completes an
episode, it performs a training iteration on its local copy of the
model with the collected data. Once the training completes, it then
computes the change in weights of each of the layers of the model
(the gradient). It then sends the gradient to the parameter server,

SEFAIAS’18, May 28, 2018, Gothenburg, Sweden Mitchell Spryn, Aditya Sharma, Dhawal Parkar, and Madhur Shrimal

Figure 3: A graphical representation of the transfer learning process and the two environments involved. On the left is the
mountain environment whichwas used for the supervised learning part. On the right is the neighborhood environment which
the reinforcement learning model was trained on. You can see the vastly different textures, shapes and colors of the two roads.
First, a model was trained on the mountain road in AirSim using labeled data collected by an expert human driver. Then, the
weights from the convolutional layers were transfered to the reinforcement learning network and frozen. Themodel was then
trained on roads in the neighborhood environment. The dense layers were trained from scratch.

and waits for a response. When the parameter server receives the
gradient from the agent node, it adds the gradient to the master
copy of the model, and then sends the updated model back to the
agent node. This may be a different model than the agent currently
has, as it may include gradients received from other nodes as well.
This process repeats until the parameter server has received a set
number of iterations.

3 EXPERIMENT DESIGN
3.1 Environment Details
We used Microsoft AirSim [12] as our simulator for the experiments
presented here. In addition to having high-quality environments

with realistic vehicle physics, it has a python API which allows
for easy data extraction and control. This allowed us to perform
all our modeling in a single language, simplifying implementation
dramatically. We used the Keras [4] front-end with TensorFlow [1]
back-end to architect and train our deep networks. The parameter
server and agent communicate via HTTP requests, with the pa-
rameter server utilizing the Django framework to respond to asyn-
chronous requests. Our experiments run on the Microsoft Azure
cloud and utilize the NV-series virtual machines. These machines
contain NVIDIA Tesla GPUs and are optimized for visualization
tasks, which allow us to run our simulator to receive photo-realistic
images for training. We used Azure Batch to manage the virtual
machines and coordinate the distribution jobs.

Distributed Deep Reinforcement Learning on the Cloud for Autonomous Driving SEFAIAS’18, May 28, 2018, Gothenburg, Sweden

Figure 4: A schematic representation of the neighborhood
map in AirSim. The black lines represent centers of the
roads. In this representation, the car would be a point, and
the reward function would be inversely proportional to the
distance to the nearest line. All roads meet at 90° angles,
which is difficult for the model to learn. After adding in the
red “stubs” the vehicle was able to learn to navigate the 90°
turns.

3.2 Transfer Learning
One of the biggest issues encountered when applying reinforce-
ment learning to a non-trivial problem is that the algorithm takes
many iterations to converge. For example, the DQN trained in [9]
to play Atari games trained for 1 million frames before reaching
convergence. For a more complex task like autonomous driving,
the algorithm could require an exponentially larger number of iter-
ations before reaching an acceptable level of accuracy. The amount
of computational power required to generate the samples and train
the algorithm on this vast quantity of data quickly becomes a bot-
tleneck, preventing fast algorithmic iteration and improvement.

One of the methods that has been shown to increase the speed of
convergence is transfer learning [15] [18]. In this scenario, transfer
learning refers to training a deep network for a related problem,
transferring the weights (and hence the learned representations)
for the convolutional layers to the current problem, and fine-tuning
the final few layers through deep reinforcement learning. We be-
gan this experiment by setting up a related supervised learning
problem. We recorded an expert human driver’s inputs as well as
the frames from the simulated front-facing web-cam to create a
labeled data set. The expert driver drove in a different environment
than the environment in which we would be training the DQN
(Figure 3). Then, we trained a deep neural network using an iden-
tical architecture to the DQN, aside from the final dense layer, to
predict the expert’s steering angle. This network took 43 minutes
to train to convergence on a single-node machine. Once converged,
we transfered the weights of the convolutional layers to the DQN,
and only trained the final two dense layers during training. This
brought down the training time dramatically: Instead of potentially
billions of examples, the algorithm only required approximately
1 million examples, or 32,000 minibatches, to converge. Figure 3
shows a graphical representation of the training process.

3.3 Reward Function
The design of the reward function is critical to the success of the
model. For our experiments, we decided to make the reward a
function of the distance of the car from the center of the road. We
computed the reward using the equation:

R(S, S ′,A) = exp(−β ∗ ||xc − xr | |) (2)
where xc is the position of the car, xr is the position of the road,

and β is a positive scaling constant that controlled the shape of the
function. This reward function has the attractive property that it is
in the range [0, 1], making it easier for the model to learn than an
unbounded function like the raw distance.

Initial experiments also showed that the model had difficulty
learning sharp turns. The car would frequently drive full speed at
a sharp turn, and attempt to turn at the last minute, resulting in a
collision. To navigate these turns, the model needs to look many
stages into the future to begin to plan for the turn. This is difficult for
our formulation of Q-learning because it only considers the current
and next state when computing the Q values. To make it easier
for the model, we created short road “stubs” that were positioned
diagonally across the sharp turns. In Figure 4 we show an overhead
map of the neighborhood environment. The central lines of the
roads are shown in black, and the added road stubs in red. The path
outlined by the stubs more closely models the path that an expert
driver would take when navigating these turns, giving the model a
more realistic signal to learn from. Also, the function gives a more
gradual reward for completing the turn, allowing the algorithm to
learn how to navigate these turns.

4 RESULTS AND DISCUSSION
During training, the flow of each episode looks as follows: To begin
the training episode, the agent node requests the latest version of
the model from the parameter server. The car is initialized with the
current version of the model file (as sent by the parameter server).
While driving, the car’s goal is to minimize its distance from the
center of the road and hence maximize the reward in equation 2. An
episode ends when the car collides or after 30 seconds of collision-
less driving. The 30 second limit is enforced to make sure the car
is not driving around for too long as that would make the local
copy of the model outdated. It also helps to avoid accumulating too
much data which might overwhelm the training process and cause
further latency in model updates.

In this experiment, we tracked two metrics: throughput and time
to automation. Throughput is the average number of examples or
data points our system is able to digest per hour. It is calculated as
follows:

Throuдhput =
o f minibatches ∗minibatch size

traininд end time − traininд start time
(3)

This will increase as the number of nodes in the system are
increased, as we achieve higher degrees of parallelism.

Time to automation is the average time it takes for the car to start
driving around in the neighborhood environment in AirSimwithout
any collisions. The timer for this metric starts when the experiment
is initialized and concludes when the node on the network has an
episode of at least 30 seconds without encountering a collision with

SEFAIAS’18, May 28, 2018, Gothenburg, Sweden Mitchell Spryn, Aditya Sharma, Dhawal Parkar, and Madhur Shrimal

Figure 5: The first graphic shows the throughput of the sys-
tem. At bottom graphic shows the time to automation for
various learning rates and number of agent nodes. The 10
agent system never reached full automation, so it is omitted
from this plot.

the environment.We utilized the transfer learning process described
in section 3.2 to initialize our reinforcement learning training runs
with learned representations from the mountain environment in
AirSim. We ran experiments with varying the number of agent
nodes from 1 to 6. In addition to varying the number of nodes, we
also varied the annealing rate between a fast (∆ϵ=-0.003) and a slow
(∆ϵ=-0.0003) value. We also performed experiments with 10 agent
nodes at both the fast and slow annealing rates. For comparison,
as a baseline benchmark, we also ran the code on a single agent
system, but initializing all layers of the model randomly, that is,
without utilizing the transfer learning process.

In Figure 5, we see the throughput and the time to automation
as functions of the number of agent nodes. For clarity, we have
left off the experiment without transfer learning from these graph-
ics. We have also left out the experiment with 10 nodes from the
second graphic as it never converged. The rate of increase of the

throughput with respect to the number of nodes of our system is ap-
proximately linear. Intuitively, this makes sense - as all agent nodes
are acting independently in our system, each agent will produce
approximately the same amount of data per given time interval. The
system does not scale indefinitely, however. We notice that once
we start increasing the number of nodes beyond 7, the throughput
tapers off. This is because our system only allows for a single param-
eter server node - it is simply getting overwhelmed with processing
the vast amounts of incoming data produced by the agent nodes.

Even more surprising, however, is the fact that increasing the
throughput of the system does not necessarily decrease training
time. For the first few additional agent machines, we observe a
dramatic drop in training time. However, surprisingly quickly we
discover that adding additional machines increases the time to
automation. We notice that when using a slower annealing rate,
the number of machines required for optimal time to automation
increases, but we still observe that arbitrarily increasing the number
of agent machines leads to increased time to automation. In both
cases, the 10 agent systems did not ever reach automation, even
after 20 hours of training.

The reason for this divergence is that during the training process,
each agent machine is working on a saved local copy of the latest
model in memory. While the agent is training, it is possible that
many updates are performed between the time that the agent starts
an episode and the agent ends an episode. By the time the agent
computes its gradient, the model’s parameters may have changed
dramatically. So, when the parameter server node integrates the
gradient received from the agent, the gradient does not shift the
model parameters in the proper direction because the model param-
eters in the latest model are so different from the model parameters
used by the agent. For systems with a small number of agent nodes,
it is unlikely that many iterations have been performed between
the start and end of an episode, and the training time improvement
from increased throughput is enough to overcome the training time
regressions caused by using outdated models. As more nodes are
added to the system however, the situation of an agent using out-
dated models becomes more likely, causing the training to diverge.
The increased throughput is not enough to compensate for this
issue, and the model takes longer to converge, if it converges at all.
Potential solutions have been proposed [19] [10], but are yet to be
verified for this specific scenario.

When trained without using transfer learning, the single agent
system took 140 hours to reach full automation. When trained with
transfer learning, it took 5 hours, a dramatic improvement. This
is interesting because the training dataset used for the transfer
learning experiment was generated from a fundamentally different
environment than the environment used for training the reinforce-
ment learning model. As can be seen in Figure 3, the road in the
mountain environment has a very different shape and color from
the road in the neighborhood environment used for reinforcement
learning. The surrounding scenery is also different. The fact that
the weights in early layers can be effectively re-used suggests that
during the supervised learning process, the model has learned a
very general representation of the input that can be applied to a
variety of environments. This also suggests a process for training
models when data is only available for a subset of the regions in
which they will operate - train a supervised learning model on the

Distributed Deep Reinforcement Learning on the Cloud for Autonomous Driving SEFAIAS’18, May 28, 2018, Gothenburg, Sweden

labeled data, and then use reinforcement learning to fine-tune these
models to operate in the other regions. This balances the manual
time needed to collect labeled data with the computational time
needed to train reinforcement learning algorithms to ultimately
minimize the model development time.

5 CONCLUSION
In this paper, we proposed an architecture for leveraging cloud
computing technologies to decrease the training time for deep re-
inforcement learning models for autonomous driving. We showed
that by parallelizing the training process, one can achieve a mas-
sive decrease in the training time. In addition, we showed that by
carefully designing the reward function and by utilizing transfer
learning, we are able to further decrease the training time (from 140
hours to automation on a single machine using random weights
to less than 1 hour on a 5-agent cluster with transfer learning).
This demonstrates that application of these powerful models to
real world problems is more feasible now than ever before. While
our proposed system drastically decreases training time, we also
showed that it does not scale infinitely, and further architectural
work is needed to allow the system to scale to massive clusters.
Solving the problem of training massive machine learning mod-
els at scale is a necessary prerequisite to solving the Autonomous
Driving problem, and the proposed framework brings us one step
closer to having the ability to train an algorithm to drive a fully
autonomous vehicle.

ACKNOWLEDGMENTS
The authors would like to thank everyone who helped bring these
ideas to life through discussions and feedback. The authors would
also specifically like to thank Kurt Niebuhr and the Microsoft Azure
Batch team for providing them with the computational resources
needed to run these experiments.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning
for Self-Driving Cars. CoRR abs/1604.07316 (2016). arXiv:1604.07316 http:
//arxiv.org/abs/1604.07316

[3] Chenyi Chen, Ari Seff, Alain L. Kornhauser, and Jianxiong Xiao. 2015. DeepDriv-
ing: Learning Affordance for Direct Perception in Autonomous Driving. 2015
IEEE International Conference on Computer Vision (ICCV) (2015), 2722–2730.

[4] François Chollet et al. 2015. Keras. https://github.com/keras-team/keras. (2015).
[5] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Marc'aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and
Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In Advances in
Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger (Eds.). Curran Associates, Inc., 1223–1231. http://papers.
nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf

[6] Nidhi Kalra and Susan M. Paddock. 2016. Driving to Safety: How Many Miles of
Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? (2016).
https://www.rand.org/pubs/research_reports/RR1478.html

[7] Francisco S Melo. [n. d.]. Convergence of Q-learning: A simple proof. ([n. d.]).

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari With
Deep Reinforcement Learning. In NIPS Deep Learning Workshop.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529–533. http://dx.doi.org/10.1038/nature14236

[10] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,
Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles
Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih, Koray Kavukcuoglu, and
David Silver. 2015. Massively Parallel Methods for Deep Reinforcement Learning.
CoRR abs/1507.04296 (2015). arXiv:1507.04296 http://arxiv.org/abs/1507.04296

[11] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani. 2016. End-to-end deep reinforce-
ment learning for lane keeping assist. (2016). https://arxiv.org/pdf/1612.04340.pdf

[12] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. 2017. AirSim:
High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field
and Service Robotics. arXiv:arXiv:1705.05065 https://arxiv.org/abs/1705.05065

[13] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2016. Safe, Multi-
Agent, Reinforcement Learning for Autonomous Driving. CoRR abs/1610.03295
(2016). arXiv:1610.03295 http://arxiv.org/abs/1610.03295

[14] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without
human knowledge. 550 (10 2017), 354–359.

[15] Matthew E. Taylor and Peter Stone. 2009. Transfer Learning for Reinforcement
Learning Domains: A Survey. J. Mach. Learn. Res. 10 (Dec. 2009), 1633–1685.
http://dl.acm.org/citation.cfm?id=1577069.1755839

[16] Christopher John Cornish HellabyWatkins. 1989. Learning from Delayed Rewards.
Ph.D. Dissertation. King’s College, Cambridge, UK. http://www.cs.rhul.ac.uk/
~chrisw/new_thesis.pdf

[17] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. In Machine
Learning. 279–292.

[18] Karl Weiss, Taghi M. Khoshgoftaar, and DingDing Wang. 2016. A survey of
transfer learning. Journal of Big Data 3, 1 (2016), 1–40. https://doi.org/10.1186/
s40537-016-0043-6

[19] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2015. Staleness-aware Async-
SGD for Distributed Deep Learning. CoRR abs/1511.05950 (2015). http://arxiv.
org/abs/1511.05950

https://www.tensorflow.org/
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://github.com/keras-team/keras
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
https://www.rand.org/pubs/research_reports/RR1478.html
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1507.04296
http://arxiv.org/abs/1507.04296
https://arxiv.org/pdf/1612.04340.pdf
http://arxiv.org/abs/arXiv:1705.05065
https://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1610.03295
http://arxiv.org/abs/1610.03295
http://dl.acm.org/citation.cfm?id=1577069.1755839
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1186/s40537-016-0043-6
http://arxiv.org/abs/1511.05950
http://arxiv.org/abs/1511.05950

	Abstract
	1 Introduction
	1.1 Deep Learning for Autonomous Driving

	2 Background and Method
	2.1 Deep Q-Network
	2.2 Training Job Distribution

	3 Experiment Design
	3.1 Environment Details
	3.2 Transfer Learning
	3.3 Reward Function

	4 Results and Discussion
	5 Conclusion
	Acknowledgments
	References

